Answer ALL the following questions: (50 Marks)

Q1: Shade (T) for True or (F) for False statements: (25 Marks; 1 mark each)

- 1. At triple point, no variable can be altered without disturbing the equilibrium.
- 2. The freezing point curve is known as liquids curve.
- 3. The eutectic component can be regarded as compound.
- 4. The horizonal portion in colling curve indicates the co-existence of three phases.
- 5. Points inside binodal curve represent one phase and outside the curve the system is two phases.
- 6. The ternary system n-butyl alcohol ethyl acetate water shows the formation of "binodal band" at lower temperature.
- 7. All melting points are eutectic points.
- 8. The lowest temperature attained of salt water system is the eutectic point.
- 9. At peritectic point E (234 °C) in phase diagram of Na₂SO₄ water system, the rhombic Na2SO4 changes into monoclinic form and the system is univariant.
- 10. Dialysis is a process of removing a dissolved substance from a colloidal solution by means of diffusion through a suitable membrane.
- 11. Gold number is the number of milligrams of protective colloid which prevents the coagulation of 10 c.c. of a given gold sol.
- 12. Electrolysis is the process in which electrical energy is used to cause a spontaneous chemical reaction to occur.
- 13. The primary batteries are rechargeable, such as leclanché cell
- 14. The charges on colloidal particles are due to the adsorption of some ions from solution.
- 15. Colloidal dispersion of starch, portions and gelatin are multimolecular colloids.
- 16. Coagulation is the process of breaking up of colloidal solution resulting in the precipitation of the particles of a dispersed phase.
- 17. Alkaline fuel cells use an alkaline electrolyte such as KOH in H₂O and are generally fueled with pure hydrogen.
- 18. When a strong beam of light is concentrated on a colloidal solution, the path of the beam is illuminated by a bluish light and becomes visible when observed from the side.
- 19. Emulsion is a solid-liquid dispersion that is small drops of one liquid dispersed in another one.
- 20. In the electrolytic cells, the electrons are supplied to the cell from an external battery.
- 21. At STP, an 835 mL of H₂ is evolved when 2 A is passed through a water electrolysis
- 22. The movement of the dispersion medium under the influence of electrical field is known as cataphoresis.

	23. Multimolecular colloid of a substance aggrega (1-1000 nm).		•			
	24. The process used for reknown as purification of	•	of impurities to a requ	isite minimum is		
	25. Ultrafiltration is the prosoluble solutes present in permeable to all substant	rocess of separating t in the colloidal soluti	on by specially prepar	red filters, which are		
Q2:	Shade the correct answer:	a, b, c or d: (25 Mark		· inswere		
	26. The phase equation can (a) $F + P = C + 2$			(d) All of these		
	27. The term eutectic mean (a) Cooling		(c) Melting	(d) Boiling		
	28. When a single phase is (a) Zero	present in a two con (b) One	aponent, the degree of (c) Two	freedom is (d) Three		
	29. FeCl ₃ -water system at (a) Freezing	any of its po (b) Congruent		sure constant). (d) All of these		
	30. Except ice number water	1 N 111 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				
	(a) I 31. An aqueous solution of		(c) III aber of phases and deg	(d) IV grees of freedom		
	equal to and (a) 1 and 1	(b) 1 and 2	(c) 1 and 3	(d) 2 and 2		
	32. The lowest temperatur (a) FeCl ₃ + ice	re is reached using fro (b) KI + ice	eezing mixture (c) NaCl + ice	(d) $Na_2SO_4 + ice$		
	•	The system $Na_2SO_4 - NaCl$ – water at 25 °C gives the formation of (a) Hydrae $Na_2SO_4 \cdot 10H_2O$ (b) Anhydrous Na_2SO_4				
	(a) Hydrae Na ₂ SO ₄ ·10 (c) Both a and b	_ , ,	T C 41			
ž	34. Which of the following particles?			. Last pirtualle will the		
	(a) Coagulation (b	5		(d) Tyndall effect		
	35. The diameter of partie (a) 10 ⁻⁹ m to 10 ⁻⁶ m	(b) 10^{-10} m to 10^{-4} r	n (c) 10 ⁻¹² m to 10 ⁻⁹ m	(d) 10 ⁻⁷ m to 10 ⁻⁵ m		
	36. In a concentration cell concentration act as					
		g statements is true for $(2 + 2 + 2 + 2 + 2 + 2 + 2 + 2 + 2 + 2 +$	$(E^{\circ} Fe^{3+}/Fe^{2+} = +0.77$ (b) $E^{\circ} = -0.30 \text{ V}$ and	(d) None of these ion: v, E° Br/Br ₂ = +1.07 v) d it is not spontaneous nd it is spontaneous.		
	38. If the direction of flow cell reaction is		rochemical cell is righ	t to left, then the		

(b) Non-spontaneous

(a) Spontaneous

(c) Reversible

(d) Irreversible

39. The followin	g equation has an equilil	orium constant K_{eq} of ϵ	$6 imes 10^{-25}$. Which of the
following con	rrectly describes the stan	dard electrode potentia	il, E°, and the standard
Gibbs free en	nergy change, ∆G°?		
	$Zn^{2+}(aq) + H_2(g)$	\rightarrow Zn $(s) + 2H^+(aq)$	
	and E° are zero	(b) Both ΔG° and	E° have the same sign
(c) ΔG° is negative.	ative, and E° is positive	(d) ΔG° is positive	, and E° is negative.
40. What is the	potential of the following	reaction that has a ΔG	of -165 kJ/mol?
	$2Na + Cl_2 = 2Na$		
(a) 2.73	(b) 0.85	(c) 1.37	(d) -2.73
	y 11		
41. What is the	pH of the unknown acidi		, in the second
	$H_2(1 atm) Pt(s) H^+(s) $		
	$E_{cell} = 0.56 V at 25 \circ$	$E_{Cu^{2+}/Cu} = 0.34$	V
(a) 1.7	(b) 2	(e) 3.7	(d) 4
42. What is K fo	r the following balanced	reaction?	
	$)+2Cr^{3+}(aq)\rightarrow 3Zn^{2+}$		0.0218 V
(a) 1.3×10^{-3}			d) 12.8
. ,	l function of a fuel cell is	•	,
(a) Produce fu		(b) Electrolyze f	ine)
(c) Produce hy		(d) Produce elec	
•		1	
	ince is the reducing agen		
	+ $2Cl^{-}(aq) + MnO_{2}(s)$ (b) $C\Gamma(aq)$	$\rightarrow \iota \iota_2(y) + M \iota \iota^{-1}(aq)$	$(d) \operatorname{Mn}^{2+}(aq)$
(a) H ⁺ (aq)	.,		
	e following preparation	method does not belo	ong to the condensation
	olloids preparation?		
		nic equilibrium method	,
		ptization method	
			ours, and after this time
			the current, in amperes,
	red to produce such an a		
(a) 1.7 A	(b) 5.0 A	``	d) 300 A
The second secon	mple of which type of col		
(a) solid in li	quid (b) Gas in gas	(c) Liquid in g	gas (d) None of these
48. The term use	d to determine the prote	cting power of a lyophil	ic colloid is
(a) oxidation	number (b) coagulati	on value	
(c) gold num	ber (d) critical m	icelle concentration	
49. Which of the	following is an associated	d colloid?	
(a) Soap	(b) Sol of gold	(c) Protei	ns (d) Starch
50. Which of the	following expressions co	rrectly shows the calcu	ılation of ΔG° in kJ/mol
	cell with the half reaction		and any salva
	$+e^- \rightarrow Ag(s) E^\circ = +0.$		$\rightarrow Zn(s), E^{\circ} = -0.76V$
(a) 2.69×10^{-1}		(c) -301.03	
. ,	(·-)	(-)	//


Oral examination

Q3: Shade (T) for True or (F) for False statements: (10 Marks; 1 mark each)

- 51. There are two invariant triple points in NaCl water system.
- 52. An example of system yielding one pair of partially miscible liquids is acetic acid CHCl₃ water.
- 53. At normal melting point of ice (0.0 °C, 1 atmospheric pressure), only ice and vapor exist together.
- 54. The transformation of S_R to S_M is accompanied by an increase in volume.
- 55. The E_{cell}° of Al-air battery is 2.73 V and it involves a 12-electron process. The free energy of the battery in kJ is 305 kJ
- 56. The oxidation state of oxygen in H₂O₂ is +1
- 57. The standard calomel electrode is used as primary reference electrode for the measurement of the single electrode
- 58. Colloidal particles are larger than suspension particles.
- 59. Suspensions exhibit Brownian motion.
- 60. Lyophilic sols are solvent colloidal systems

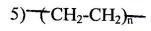
Good Luck

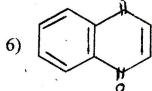
Examiners: Prof. Maher M. A. Hamed, Dr. Mohamed N. Abd El-Hamed

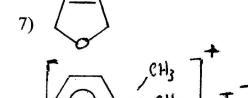
Assiut University Sep. 2022 Faculty of Science Time: 2 hours Chemistry Department Final Exam. for (211C) (Student not Chemistry, Summery Term) Write the name of all compounds. Answer for the following questions: <u>1) A- What mining by</u> (give examples):- (5 only)----- (10 Marks): 1- Oxime 2-Phenone. 3- Cis / Trance 4- TFA 5- Sec. (2°)alchol. 6- TNB 7-DMS B- Compound (A) its molecular formula (C₅H₁₁Cl). Draw the structural isomers of this compound. 2) A-Give examples for the following reactions (Three only)-(10 Marks): 1- polymerisation reaction. 2- Oxidition; Reduction reaction. 3- Fridel – Crafts alkylation. 4- Nuclophilic Sub. reaction (SN¹). B- Write one method to prepare the following compounds (Three only): o- xylene* Benzoic anhydride * p- bromoaniline *Benzylchloride. 3) A- How do you convert: (Three only)----- (10 Marks): 1- Formaldehyde \rightarrow Pry.(1°) alchol by Grinuard reagent. 2- Tolune \rightarrow Saccharin. 3- Acetophenone \rightarrow Iodoform. 4- Ethyl alchol → Acetic anhydride. B-Write on Three only: 1- Anti- Markownikoffs rule 2-Sandmeyer reaction

*************** أنظر خلفة "*********

4- Elecrophilic addition of HBr to 1, 3 butadiene


3- Gabrile reaction.


4)- A- complete the following equations (Four only)----- (20 Marks)


- 1- Fractoze + 5. Acetic anhydride \rightarrow a + b
- 2-1-Pentene $+O_3 \rightarrow a + H_2O \rightarrow b + c$
- 3- Benzoic acid $+ PCl_5 \rightarrow a + b + c$
- 4- Toluene + Cl_2 / dark (Fe) \rightarrow a + b
- 5- Aniline + $HNO_2(NaNO_2 / HCl) \rightarrow a + \beta$ -naphthol $\rightarrow b + c$

B- Write the name of the following compounds.

- 1) $CH_3 S C_4H_9$
- 2) $CH_3 C \equiv C C_3H_7$
- 3) NH₂-CH₂-COOH
- 4) $CH_2 = C (Br) CH_2 C (Cl) = CH_2$

C-Draw the structural formula of (5 only) from the following compounds:

1-Chloro-cyclohexadiene *

Benzanilide *

Ter. Butylchloride

Sodium salcylate

p – cresole *

Succinemide

Good Luke Prof. Dr Osama Shehata Moustafa Sep.2022 Assiut University
Faculty of Science
Chemistry Department

Date: 15 / 9 / 2022 Time: 3 hours

Final Examination of Organic Chemistry II (212C) for Credited Hours Students

بتم طمس (تسويد) الإجابة المختارة من قبل الطالب باستخدام القلم الجاف فقط

Answer the following questions:

Part I:

Q1: Choose (T) for true sentence or (F) for false sentence: (1 Mark/each) (50 marks):

- 1. The anisole structure contains hydroxyl group attached to benzene ring. (T/F)
- 2. Reaction of benzene with acetyl chloride and anhydrous AlCl₃ gave toluene. (T/F)
- 3. Phenyl diazonium chloride reacts with water to give phenol. (T/F)
- 4. Aniline reacts with conc. nitric acid to give p-nitroaniline. (T/F)
- 5. Phenyl diazonium chloride reacts with CuCl to give benzene. (T/F)
- 6. Oxidation of ethyl benzene with KMnO₄ produces benzoic acid. (T/F)
- 7. Decarboxylation of benzoic acid produces benzaldehyde. (T/F)
- 8. Benzene is electron enrich so it reacts as electrophile. (T/F)
- 9. Reaction of bromine with toluene in the presence of AlBr₃ gave benzyl bromide. (T/F)
- 10. Oxidation of benzene using vanadium oxide gave maleic anhydride. (T/F)
- 11. Nitro group is deactivating group and directing meta in the benzene reactions. (T/F)
- 12. NH_2 is the deactivating group and directing o and p in the benzene reactions. (T/F)
- 13. Fusion of benzene with pyridine at C2/C3 gave Quinoline structure. (T/F)
- 14. The lone pair of nitrogen electrons in pyridine involved in aromatic bonding. (T/F)
- 15. Reduction of nitrobenzene using Sn/HCl gives aniline. (T/F)
- 16. Synthesis of pyrrole works only if the methylene group of the second component is activated to enable the desired condensation it's called Paal-Knorr
- 17. 1,4-Dicarbonyl compounds can be reacted with P₂S₅ to give thiophene.
- 18. The Numbering of heterocyclic compounds generally start at heteroatom.
- 19. Oxazole compound would not be expected an aromatic compound.
- 20. Bromination of aniline gave p-bromoaniline.
- 21. The formylation reagent of the reactive heterocyclic compounds is DMSO/HCl.
- 22. Reaction of haloketone with thioamide gives thiazole.
- 23. An example of 1,2-diazole is: A-Pyrazole B-Thiazole C-Imidazole D-Pyrimidine
- 24. Sulphonic group in benzenesulphonic acid directs towards meta positions. (T / F)
- 25. Benzene was oxidized by vanadium pentaoxide at high temeprature to give phenol. (T / F)
- 26. Benzene oxidized by ozone to give maleic anhydride.(T / F)
- 27. Decarboxylation of toluic acid gave toluene. (T / F)
- 28. Acylation of Pyrrole with Ac₂O at 200°C leads to form 2-acetylpyrrole. (T / F)
- 29. The deactivating group is group that can donate electron density to the aromatic ring. (T / F)
- 30. TNT can be oxidized by Na₂Cr₂O₇/H₂SO₄ to give trinitrobenzoic acid. (T / F)
- 31. Picric acid can be reacted with PCl₅ to give picryl chloride. (T / F)
- 32. Hydrogenation of nitrobenzene gives nitroaniline. (T / F)
- 33. Diphenyl amine is type of tertiary amines. (T / F)

34. Nitrosation of secondary aromatic amine gave electrophilic substitution at para position of
aromatic ring. (T / F)
35. Nitrosation of primary aromatic amine gave N-nitroso compound. (T / F)
36. Reaction of aniline with benzaldehyde to give Schif's base is called condensation reaction. (T / F)
37. Hydogenation of toluene gives cyclohexane. (T / F)
38. Conc. Nitric acid is used for the nitration of pyrrole. (T/F)
39. The compound to be aromatic must apply $4n+1\pi$ rule. (T/F)
40. Synthesis of pyridine by condensation of β-dicarbonyl compounds and aldehydes in presence of
NH ₃ it's called Hantzsch synthesis (T / F)
41. Pyrrole is one of 1,3-diazole compounds. (T / F)
42. Indole system produces from fusion of benzene with pyrrole. (T / F)
43. Isoxazole is 1,2-oxazole type where imidazole is 1,3-diazole type. (T / F)
44. Isoquinoline comes from fusion of pyridine with benzene ring at C3/C4. (T/F)
45. The nitrogen atom of quinoline can be protonated and does not disturb aromaticity. (T / F)
46. Tetrazole is a six membered ring bearing four nitrogen heteroatoms. (T/F)
47. Pyrazole is one of 1,2-diazole type. (T / F)
48.1,3-Dicarbonyl compound reacts with thiourea to give pyrimidine-2-thione. (T / F)
49. The five membered ring can react with electrophile at the heteroatom (T/F)
50. The order of basicity is: Imidazole > Thiazole > Oxazole. (T/F)
(1 / 1)
Part II. Others:
Q2: Choose the correct answer A, B, C, or D: (1 Mark/each) (10 marks)
51 is the activating group and directing o-p in the monosubstituted benzene reactions:
A- Br. B- NH ₂ C- NO ₂ . D- SO ₃ H.
52 is deactivating group and directing o and p in the monosubstituted benzene reactions.
A- Br B- OH C- NH ₂ D- CN.
53. Nomenclature of heterocyclic compounds having five membered ring suffixes is:
Aine Bole Cepine Dolidin.
54. The electrophilic substitution reactions of indole occurs mainly at:
A-C ₂ BNH C-C ₃ D-Aromatic ring.
55. Direct acetylation of thiophene with acetyl chloride gives:
A- 2-Acetylthiophene B- 3-Acetylthiophene C- A and B D- None of them.
56. Formylation reaction of reactive heterocyclic compounds by using DMF/POCl ₃ in acidic media it's called: A- Chichibabin B- Vilsmeir C- Knorr D- Paal-Knorr
WW TO 131
57. Pyridine is: A-Moderately acidic. B-Moderately basic C-Acidic. D-Basic. 58. Reduction of acetophenone using Zn(Hg)/HCl gave: A- Ethyl benzoate. B. Ethyl benzene.
C-Benzene. D-Benzoic acid.
59. N,N-Dimethyl amine is type of: A- Secondary amine. B- Primary amine.
C- Tertiary amine. D- Quaternary salt.
60. An example for 1,2-diazine is: A- Imidazole. B- Pyrimidine.
C- Pyrazine. D- Pyridazine.
Cood I vols

Dr. Ahmed Abdou Omar

Date: 4/9/2022

Time allowed: 3 hours

Final Examination of Organic Chemistry I (210C) for Credited Hours Students

يتم طمس (تسويد) الإجابة المختارة من قبل الطالب باستخدام القلم الجاف فقط

Answer the following questions:

<u>Part I: (50 marks):</u>

Q1: Choose (T) for true sentence or (F) for the false: (1 Mark/each)

- 1. Carboanion stabilized by alkyl substituent by inductive effect and hyperconjugation (T/F)
- 2. In heterolytic fission, both of the shared electrons are given entirely to one of the atom. (T/F)
- 3. Alkenes reactions mostly nucleophilic addition reactions. (T/F)
- 4. Homolytic fission has to give free radical not ions. (T/F)
- 5. Reaction of benzaldehyde and acetaldehyde in presence of NaOH is called Claisen reaction. (T/F)
- 6. Trichloroacetic acid is more acidic than trifluoroacetic acid. (T/F)
- 7. Colline oxidation is oxidation of primary alcohol to aldehyde in presence of PCC/CH₂Cl_{2.} (T/F)
- 8. Chloro acetic acid is more acidic than acetic acid. (T/F)
- 9. \,\rac{r}{-Dithiane} can be used for preparing only ketones . (T/F)
- 10. Carboxylic acids are more acidic than alcohol. (T/F)
- 11. Intermediates are the final compounds of the reactions (products). (T/F)
- 12. Acetal is used to protect ketones from reacting with strong bases and nucleophile. (T/F)
- 13. Carbocations like free radicals have six electrons. (T/F)
- 14. Isopropyl cations are more stable than ethyl cations. (T/F)
- 15. carbocations are destabilized by alkyl substituent. (T/F)
- 16. Carbenes are neutral species and react as neucleophiles. (T/F)
- 17. LiAlH₄ reagent can reduce a carbonyl compounds to alcohols. (T/F)
- 18. α,β-Unsatureted carbonyls reacted with conjugated diene in Aldol condensation. (T/F)
- 19. The reaction of 2-propanone with ethylene glycol in acidic medium gives hemiacetal. (T/F)
- 20. The electrophilic reagents are electron loving species (like Lewis acids). (T/F)
- 21. AlCl₃ and hydrogen proton are electrophiles. (T/F)
- 22. A nucleophile is a reagent having at least one unshared pair valence electrons. (T/F)
- 23. Ethers and alcohols are nucleophils. (T/F)
- 24. Aldehyde reacts with Grignard reagent to give alcohols. (T/F)
- 25. An elimination reaction is one where starting material loses or be added a small molecule. (T/F)
- 26. Zaitsev rule tells the reaction gives the most highly substituted (high energy) alkene as the major product. (T/F)
- 27. The carbonyl carbon is sp2 hybridized. (T/F)
- 28. The nucleophiles attack oxygen atom from either top or bottom of carbonyl group. (T/F)
- 29. A ketone has two alkyl (or aryl) groups bonded to the carbonyl carbon. (T/F)
- 30. The carbonyl double bond is shorter and stronger. (T/F)
- 31. Jones oxidation is oxidation of secondary alcohols to ketones by chromic acid. (T/F)
- 32. Collins reagent is Pyridine- CrO3 while Dess-Martin reagent is triacetoxyperiodinane. (T/F)
- 33. Dithiane has relatively acidic hydrogens located between the two sulfur atoms. (T/F)
- 34. The dithiane anion can react as a nucleophile. (T/F)

- 35. Benzene reacts with acetyl chloride to give acetophenone using Friedal-Crafts reaction. (T/F) 36. Gattermann-Koch synthesis is the method for preparing of benzaldehyde. (T/F) 37. Ketones are more reactive than aldehydes due to Steric effect. (T/F)38. Alcohols can react with ketones to form acetals. (T/F) 39. When aldehyde reacted with ethylene glycol it gave cyclic acetal. (T/F) 40. Primary amines (and ammonia) react with ketones or aldehydes to generate imines. (T/F) 41. hydroxylamines are reacted with aldehydes and ketones to give oximes. (T/F) 42. Thiosemicarbazones are formed from reaction with thiosemicarbazides with alcohols. (T/F) 43. Hydrazones are produced through reaction of hydrazines with ketones. (T/F) 44. Aldehydes and ketones reacted with tertiary amines to give enamine compounds. (T/F) 45. Catalytic hydrogenation Pt / H₂ is highly selective reducing agent. (T/F) 46. Ketones and aldehydes can be oxidized easily to carboxylic acids. (T/F) 47. Cyclopentanone is reduced to give cyclopentane using Wolff-Kishner reaction. (T/F) 48. CH₃CH₂CH₂CH₂COOH is named pentanoic acid. (T/F) 49. The electronegative elements increase the acidity properties in carboxylic acids. (T/F) 50. Formic acid is more acidic than acetic acid. (T/F) Part II. Others: (10 marks) Q2: Choose the correct answer A, B, C, or D: (1 Mark/each) 51. Which of the following is *not* a nucleophile? C. Cl⁺ D. CN B. CH₃OH A. H₂O 52. Alkenes can be reacted by O₃ followed by reduction to generate RCHO and /or RCOR D. Elimination. B. Ozonolysis C. Hydrolysis. A. Oxidation through: 53. Triacetoxyperiodinane able to oxidize alcohol to RCOR is performed in: C. KMnO₄/H⁺ B. DMSO/(COCl)₂ A. CH₂Cl₂/r.t. 54. Deoxygenation of a carbonyl group to methylene group in excess of NH₂NH₂, then B. Canizzaro reaction. A. Wolff-Kishner reaction. heating with KOH called: D. Clemennson Reaction C. Diels-Alder Reaction. 55. Hydrolysis of 1-chloro-3-methy-2-butene gives: A. Primary alcohol only. B. Tertiary alcohol only. C. Primary alcohol as minor product and tertiary alcohol as D. Primary alcohol as major and tertiary alcohol as minor. major. 56. Aldehydes react with Grignard reagent to give: D. Phenols. B. Alcohols. C. Amides. A. Acids. 57. Which combination of carbonyl compounds gives PhCO-CH=CH₂: C. PhCHO+HCHO B. PhCHO+CH₃CHO A. PhCOCH₃+HCHO

 - 58. The major product from heating a mixture of CH₃CHO and NaOH is:
 - A. CH₃CH=CHCHO
- C. $(CH_3)_2C=CHCHO$ B. CH₃CH₂CH=CHCHO
- 59. The reaction of PhMgBr with propanal, followed by hydrolysis gives:
 - A. 2-Phenylpropanol
- B. 1-Phenyl-2-propanol
- C. 1-Phenylpropanol
- 60. The product of reaction of 2-propanone with ethylene glycol in acidic medium are:
 - A. Hemiacetal.
- B. Acetal.

C. Cyclic acetal.

Good Luck

Dr. Ahmed Abdou O. Abeed

10 Spetmber 2022 Time: 2 hrs

Final Examination of the Summer Semester for 2nd Year Students Physical and Inorganic Chemistry (C-250)

Section # 1

Answer Only Five from the Following Questions:

(25 Marks)

- a) Discuss the temperature dependence of entropy.
- b) Determine the heat needed to raise 100 gm of Pb from 0 to 500 °C, given its specific heats to be 0.031 (solid) and 0.038 (liquid). Its heat of fusion is 5.9 cal/g, its melting point is 330°C.
- c) The density of ice at 0° C is 0.9g cm⁻³ and has entropy of 38 cal mol⁻¹ deg⁻¹. The density of liquid water at this temperature is 1 g cm⁻³ and has entropy of 60 cal mol⁻¹ deg⁻¹. Given the date, calculate Δ S, Δ H and Δ E for the conversion of 36 gm of ice to liquid water at the normal melting point. (M.wt. of $H_2O=18$ g mole⁻¹)
- d) Calculate the enthalpy change when 540 g of water freezes at constant pressure and a temperature of -30°C. At 0°C, ΔH is -1435 cal mole⁻¹, and C_p is 18 and 8.8 cal mol⁻¹deg⁻¹ for water and ice, respectively.
- e) Given, for acetic acid that ΔE_{fus} =2600 cal mol⁻¹ at its melting point 17°C and ΔH_{vap} =6000 cal mol⁻¹ at its boiling point 120°C. Calculate the change in entropy that takes place when 120 gm of solid acetic acid is melted at its melting point and vaporized at its boiling point, all under constant pressure taken as 1 atm. Assume that molar heat capacity of acetic acid is 27.6 cal deg⁻¹ mol⁻¹.(M.wt of acetic acid=60g/mole)
- f) Derive an expression for the efficiency of Carnot's engine working between two temperature T_1 and T_2 .
- g) At 760 mm/Hg, 100gm of benzene is vaporized at its boiling point of 80°C. Calculate:
 - a) W_{rev} b) q
- **c)** Δ**H**

d) ΔE

(Heat of vaporization is 7.6 K cal/mol, M.wt of benzene =78 gm/mol)

Section # 2

Answer the Following Questions:

(25 Marks)

- 1. What are the differences between the following pairs?
 - a) Ortho and para hydrogen

b) Water gas and producer gas

- c) Diamond and graphite
- 2. Give the reason for three only of the following:
 - a) Elements at the end of group (IIIA) show oxidation state of (+I)
 - b) CO is toxic to the human.
 - c) Freons causes damage to the ozone layer.
 - d) Addition of glycerol during the titration of H₃BO₃ and NaOH.
- 3. How can you obtain three only of the following?
 - a) Urea
- b) Producer gas

c) CO₂

d) NH₃

- 4. Write the structure of three only of the following:
 - a) Freons b) Pyroposphorous acid c) Orthophosphoric acid
 - Orthophosphoric acid d) Superphosphate